Direct nanodroplet and microbubble comparison for high intensity focused ultrasound ablation enhancement and safety

نویسندگان

  • Linsey Moyer
  • Kelsie Timbie
  • Paul Sheeran
  • Richard Price
  • Wilson Miller
  • Paul Dayton
چکیده

Background/introduction High intensity focused ultrasound (HIFU) surgery often requires hours of ablation in order to treat an entire tumor. Both perfluorocarbon gaseous microbubbles and vaporized liquid droplets are known enhancers of HIFU thermal ablation. Microbubbles, however, often lead to surface or skin lesions. Furthermore, they have a relatively short half-life in vivo (minutes) rendering them insufficiently stable for an entire HIFU surgery, which can last several hours. Many droplet formulations require very high pressures to activate. Our aim was to design an agent that could shorten ablation procedures without sacrificing safety. We designed and investigated a perfluorocarbon nanodroplet composed of a 1:1 ratio of dodecafluoropentane and decafluorobutane. These are tuned to change phase and activate at only 2 MPa peak negative pressure with common HIFU pulse lengths, enabling focused and targeted activation. Additionally, they are stable at body temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles

BACKGROUND During high-intensity focused ultrasound (HIFU) surgical procedures, there is a need to rapidly ablate pathological tissue while minimizing damage to healthy tissue. Current techniques are limited by relatively long procedure times and risks of off-target heating of healthy tissue. One possible solution is the use of microbubbles, which can improve the efficiency of thermal energy de...

متن کامل

Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...

متن کامل

In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions

BACKGROUND Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation regio...

متن کامل

Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation rel...

متن کامل

Potential enhancement of intravenous nano-hydroxyapatite in high-intensity focused ultrasound ablation for treating hepatocellular carcinoma in a rabbit model

The aim of the present study was to evaluate the safety and efficiency of an intravenously delivered nano-hydroxyapatite (Nano-HA) solution into a rabbit model (Oryctolagus cuniculus) to determine the potential enhancement of high-intensity focused ultrasound (HIFU) for the ablation of hepatocellular carcinoma (HCC) in liver tissue. The present study clearly indicated that the intravenous deliv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015